Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Front Vet Sci ; 11: 1367730, 2024.
Article in English | MEDLINE | ID: mdl-38440388

ABSTRACT

Spermatogenesis is a complex process intricately regulated by the hypothalamic-pituitary-testis (HPT) axis. However, research on the regulatory factors governing the HPT axis remains limited. This study addresses this gap by conducting a comprehensive analysis of transcriptomes from the pituitary and testis tissues across various developmental stages, encompassing embryonic day (E120), neonatal period (P0), pre-puberty (P90), and post-puberty day (P270). Utilizing edgeR and WGCNA, we identified stage-specific genes in both the pituitary and testis throughout the four developmental stages. Notably, 380, 242, 34, and 479 stage-specific genes were identified in the pituitary, while 886, 297, 201, and 3,678 genes were identified in the testis. Subsequent analyses unveiled associations between these stage-specific genes and crucial pathways such as the cAMP signaling pathway, GnRH secretion, and male gamete generation. Furthermore, leveraging single-cell data from the pituitary and testis, we identified some signaling pathways involving BMP, HGF, IGF, and TGF-ß, highlighting mutual regulation between the pituitary and testis at different developmental stages. This study sheds light on the pivotal role of the pituitary-testis axis in the reproductive process of sheep across four distinct developmental stages. Additionally, it delves into the intricate regulatory networks governing reproduction, offering novel insights into the dynamics of the pituitary-testis axis within the reproductive system.

2.
Curr Issues Mol Biol ; 45(4): 3219-3237, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37185734

ABSTRACT

KDM5B is essential for early embryo development, which is under the control of maternal factors in oocytes. Granulosa cells (GCs) play a critical role during oocyte mature. However, the role of KDM5B in GCs remains to be elucidated. In the current study, we found that KDM5B expressed highly in the ovaries and located in goat GCs. Using an RNA sequence, we identified 1353 differentially expressed genes in the KDM5B knockdown GCs, which were mainly enriched in cell cycle, cell division, DNA replication and the cellular oxidative phosphorylation regulation pathway. Moreover, we reported a decrease in the percentage of proliferated cells but an increase in the percentage of apoptotic cells in the KDM5B knockdown GCs. In addition, in the KDM5B knockdown GCs, the percentage of GCs blocked at the S phase was increased compared to the NC group, suggesting a critical role of KDM5B in the cell cycle. Moreover, in the KDM5B knockdown GCs, the reactive oxygen species level, the mitochondrial depolarization ratio, and the expression of intracellular phosphorylated histone H2AX (γH2AX) increased, suggesting that knockdown of KDM5B leads to DNA damage, primarily in the form of DNA double-strand breaks (DSBs). Interestingly, we found a down-regulation of MTF1 in the KDM5B knockdown GCs, and the level of cell proliferation, as well as the cell cycle block in the S phase, was improved. In contrast, in the group with both KDM5B knockdown and MTF1 overexpression, the level of ROS, the expression of γH2AX and the number of DNA DSB sites decreased. Taken together, our results suggest that KDM5B inhibits DNA damage and promotes the cell cycle in GCs, which might occur through the up-regulation of MTF1.

3.
Sheng Wu Gong Cheng Xue Bao ; 28(2): 164-77, 2012 Feb.
Article in Chinese | MEDLINE | ID: mdl-22667119

ABSTRACT

Porcine interferon-alpha (pIFN-alpha) fermentative production by recombinant Pichia pastoris was carried out in a 10-L bioreactor to study its metabolism changes and effects on fermentation under different inducing strategies, by analyzing the change patterns of the corresponding metabolism and energy regeneration. The results show that the specific activities of alcohol oxidase (AOX), formaldehyde dehydrogenase (FLD) and formate dehydrogenase (FDH) largely increased when reducing temperature from 30 degrees C to 20 degrees C under pure methanol induction, leading significant enhancements in methanol metabolism, formaldehyde dissimilatory energy metabolism and pIFN-alpha antiviral activity. The highest pIFN-alpha antiviral activity reached 1.4 x 10(6) IU/mL, which was about 10-folds of that obtained under 30 degrees C induction. Using methanol/sorbitol co-feeding strategy at 30 degrees C, the major energy metabolism energizing pIFN-alpha synthesis shifted from formaldehyde dissimilatory energy metabolism pathway to TCA cycle, formaldehyde dissimilatory pathway was weakened and accumulation of toxic intermediate metabolite-formaldehyde was relieved, and methanol flux distribution towards to pIFN-alpha synthesis was enhanced. Under this condition, the highest pIFN-alpha antiviral activity reached 1.8 x 10(7) IU/mL which was about 100-folds of that obtained under pure methanol induction at 30 degrees C. More important, enhanced pIFN-alpha production with methanol/sorbitol co-feeding strategy could be implemented under mild conditions, which greatly reduced the fermentation costs and improved the entire fermentation performance.


Subject(s)
Energy Metabolism , Interferon-alpha/biosynthesis , Methanol/pharmacology , Pichia/metabolism , Sorbitol/pharmacology , Animals , Fermentation , Interferon-alpha/genetics , Pichia/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Swine
4.
Appl Biochem Biotechnol ; 165(2): 559-71, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21567212

ABSTRACT

Improved porcine interferon-α (pIFN-α) production by recombinant Pichia pastoris was achieved by culture conditions optimization in a 5-l bioreactor. The results indicated that the pIFN-α concentration, specific methanol consumption rate, specific activities of alcohol oxidase, formaldehyde dehydrogenase, and formate dehydrogenase could be significantly enhanced by decreasing induction temperature. The highest pIFN-α concentration (1.35 g l(-1)) was obtained by simultaneously controlling methanol concentration at 5 g l(-1) and induction temperature at 20 °C, which was about 1.6-fold higher than the maximum obtained with previous optimal methanol concentration level (about 10 g l(-1)) when inducing at 30 °C. The potential mechanisms behind low temperature and low methanol concentration effect on pIFN-α production may be ascribed to higher cell metabolic activity, more carbon flux towards pIFN-α production, and less intracellular/extracellular protease release.


Subject(s)
Industrial Microbiology/methods , Interferon-alpha/biosynthesis , Methanol/metabolism , Pichia/enzymology , Recombinant Proteins/biosynthesis , Alcohol Oxidoreductases/metabolism , Aldehyde Oxidoreductases/metabolism , Animals , Bioreactors , Culture Media , Fermentation , Formate Dehydrogenases/metabolism , Methanol/pharmacology , Pichia/drug effects , Pichia/genetics , Swine , Temperature , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...